Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 281: 127611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228018

RESUMO

Volatile organic compounds (VOCs) produced by bacteria play an important, yet relatively unexplored role in interactions between plants and phytopathogens. In this study, the soil bacterium Bacillus halotolerans NYG5 was identified as a potent biocontrol agent against several phytopathogenic fungi (Macrophomina phaseolina, Rhizoctonia solani, Pythium aphanidermatum, and Sclerotinia sclerotiorum) through the production of VOCs. NYG5-emitted VOCs also inhibited the growth of bacterial pathogens (Agrobacterium tumefaciens, Xanthomonas campestris, Clavibacter michiganensis, and Pseudomonas syringae). When cultured in various growth media, NYG5 produced a variety of VOCs. Five distinct VOCs (2-methylbutanoic acid, 5-methyl-2-hexanone, 2,3-hexanedione, 2-ethyl-1-hexanol, and 6-methyl-2-heptanone) were identified using headspace GC-MS. 2,3-Hexanedione exhibited potent lethal effects on the tested phytopathogens and nematicidal activity against Meloidogyne javanica at a concentration of 50 ppm. In addition, 0.05 ppm 2,3-hexanedione stimulated the expression of pathogenesis-related genes 1 and 2 in Arabidopsis thaliana. Interestingly, 2,3-hexanedione is used as a food additive at higher concentrations than those tested in this study. Hence, 2,3-hexanedione is a promising biologically active compound that might serve as a sustainable alternative to common chemical pesticides and an elicitor of plant defense.


Assuntos
Bacillus , Hexanonas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bactérias/metabolismo
2.
Sci Rep ; 13(1): 14592, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669955

RESUMO

The involvement of WRKY transcription factors in plant-nematode interactions, and in particular, how these WRKYs participate in regulating the complex morphological and physiological changes occurring after nematode infection, are the topic of active research. We characterized the functional role of the unstudied tomato WRKY genes SlWRKY16 and SlWRKY31 in regulating tomato roots' response to infection by the root-knot nematode Meloidogyne javanica. Using promoter-GUS reporter gene fusions and qRT-PCR, we show that both SlWRKYs are predominantly expressed during the first half of the parasitic life stages, when feeding-site induction and construction occur. Expression of SlWRKY16 increased sharply 15 days after inoculation, whereas SlWRKY31 was already induced earlier, but reached its maximum expression at this time. Both genes were downregulated at the mature female stage. To determine biological function, we produced transgenic lines overexpressing SlWRKY16 and SlWRKY31 in tomato hairy roots. Overexpression of both genes resulted in enhanced M. javanica infection, reflected by increased galling occurrence and reproduction. Expression profiling of marker genes responsive to defense-associated phytohormones indicated reductions in salicylic acid defense-related PR-1 and jasmonic acid defense-related PI in inoculated roots overexpressing SlWRK16 and SlWRKY31, respectively. Our results suggest that SlWRKY16 and SlWRKY31 function as negative regulators of plant immunity induced upon nematode infection.


Assuntos
Infecções por Nematoides , Solanum lycopersicum , Tylenchoidea , Animais , Fusão Gênica , Genes Reporter
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...